Machine Learning
  • Introduction
  • Self LEarning
  • Why Statstics in ML Or Data Science
  • How important is interpretability for a model in Machine Learning?
  • What are the most important machine learning techniques to master at this time?
  • Learning
    • Supervised Learning
      • Evaluating supervised learning
        • K-fold cross validation
        • Using train/test to prevent overfitting of a polynomial regression
      • Regression
        • Linear regression
          • The ordinary least squares technique
          • The gradient descent technique
          • The co-efficient of determination or r-squared
            • Computing r-squared
            • Interpreting r-squared
          • Assumptions of linear regression
          • Steps applied in linear regression modeling
          • Evaluation Metrics Linear Regression
          • p-value
        • Ridge regression
        • Least absolute shrinkage and selection operator (lasso) Regression
        • Polynomial regression
        • Performance Metrics
        • Regularization parameters in linear regression and ridge/lasso regression
        • Comments
      • Classification
        • test
        • Logistic Regression
        • naïve Bayes
        • support vector machines (SVM)
        • decision trees
          • Split Candidates
          • Stopping conditions
          • Parameters
            • Non Tunable Or Specificable
            • Tunable
            • Stopping Parameters
        • Evaluation Metrics
      • Random Forest
        • Logistic Regression Versus Random Forest
        • Paramters
          • Non Tunable Parameters
          • Tunable
          • Stopping Param
        • Parameter Comparison of Decision Trees and Random Forests
        • Classification and Regression Trees (CART)
        • How random forest works
        • Terminologies related to random forest algorithm
        • Out-of-Bag Error
      • Decision Trees
        • Gini Index
    • Unsupervised learning
      • Clustering
        • test
        • KMeans Clustering
          • Params
          • Functions
        • Gaussian Mixture
          • Parameters
          • functions
    • Semi-supervised learning
    • Reinforcement learning
    • Learning Means What
    • Goal
    • evaluation metrics
      • Regression
        • MSE And Root Mean Squared Error (RMSE)
        • Mean Absolute Error (MAE)
      • Model Validation
        • test
      • The bias, variance, and regularization properties
        • Regularization
          • Ridge regression
        • Bias And Variance
      • The key metrics to focus
    • hyperparameters
  • Steps in machine learning model development and deployment
  • Statistical fundamentals and terminology
  • Statistics
    • Measuring Central Tendency
    • Probability
    • Standard Deviation , Variance
    • root mean squared error (RMSE)
    • mean Absolute Error
    • explained Variance
    • Coefficient of determination R2
    • Standard Error
    • Random Variable
      • Discrete
      • Continuous
    • Sample vs Population
    • Normal Distribution
    • Z Score
    • Percentile
    • Skewness and Kurtosis
    • Co-variance vs Correlation
    • Confusion matrix
    • References
    • Types of data
      • Numerical data
        • Discrete data
        • Continuous data
      • Categorical data
      • Ordinal data
    • Bias versus variance trade-off
  • Spark MLib
    • Data Types
      • Vector
      • LabeledPoint
      • Rating
      • Matrices
        • Local Matrix
        • Distributed matrix
          • RowMatrix
          • IndexedRowMatrix
          • CoordinateMatrix
          • BlockMatrix
    • Comparing algorithms supported by MLlib
      • Classification
    • When and why should you use MLlib (versus scikit-learn versus TensorFlow versus foo package)
    • Pipeline
    • References
    • Linear algebra in Spark
  • Terminology
  • Machine Learning Steps
    • test
  • Preprocessing and Feature selection techniues
  • The importance of variables feature selection/attribute selection
    • Feature Selection
      • forward selection
      • mixed selection or bidirectional elimination
      • backward selection or backward elimination
      • The key metrics to focus on
  • Feature engineering
  • Hyperplanes
  • cross-validation
  • Machine learning losses
  • When to stop tuning machine learning models
  • Train, validation, and test data
  • input data structure
  • Why are matrices/vectors used in machine learning/data analysis?
    • Linear Algebra
  • OverView
  • Data scaling and normalization
  • Questions
  • Which machine learning algorithm should I use?
Powered by GitBook
On this page

Was this helpful?

  1. Learning
  2. Supervised Learning
  3. Regression

Linear regression

PreviousRegressionNextThe ordinary least squares technique

Last updated 5 years ago

Was this helpful?

This is used for the prediction of continuous variables such as customer income and so on. It utilizes error minimization to fit the best possible line in statistical methodology. However, in machine learning methodology, squared loss will be minimized with respect to β coefficients. Linear regression also has a high bias and a low variance error.

In linear regression, only the residual sum of squares (RSS) is minimized, whereas in ridge and lasso regression, a penalty is applied (also known as shrinkage penalty) on coefficient values to regularize the coefficients with the tuning parameter λ.

When λ=0, the penalty has no impact, ridge/lasso produces the same result as linear regression, whereas λ -> ∞ will bring coefficients to zero:

Logistic regression (LR) belongs to the family of regression algorithms. The goal of regression is to find relationships and dependencies between variables. It models the relationship between a continuous scalar dependent variable y (that is, label or target) and one or more (a D-dimensional vector) explanatory variable (also independent variables, input variables, features, observed data, observations, attributes, dimensions, and data points) denoted as x using a linear function:

LR models the relationship between a dependent variable y, which involves a linear combination of interdependent variables xi. The letters A and B represent constants that describe the y axis intercept and the slope of the line respectively:

y = A+Bx

Figure 9, Regression graph separates data points (in red dots) and the blue line is regression shows an example of simple LR with one independent variable—that is, a set of data points and a best fit line, which is the result of the regression analysis itself. It can be observed that the line does not actually pass through all of the points.

The distance between any data points (measured) and the line (predicted) is called the regression error. Smaller errors contribute to more accurate results in predicting unknown values. When the errors are reduced to their smallest levels possible, the line of best fit is created for the final regression error. Note that there are no single metrics in terms of regression errors; there are several as follows:

  • Mean Squared Error (MSE): It is a measure of how close a fitted line is to data points. The smaller the MSE, the closer the fit is to the data.

  • Root Mean Squared Error (RMSE): It is the square root of the MSE but probably the most easily interpreted statistic, since it has the same units as the quantity plotted on the vertical axis.

  • R-squared: R-squared is a statistical measure of how close the data is to the fitted regression line. R-squared is always between 0 and 100%. The higher the R-squared, the better the model fits your data.

  • Mean Absolute Error (MAE): MAE measures the average magnitude of the errors in a set of predictions without considering their direction. It's the average over the test sample of the absolute differences between prediction and actual observation where all individual differences have equal weight.

  • Explained variance:In statistics,explained variation measures the proportion to which a mathematical model accounts for the variation of a given dataset.

https://www.safaribooksonline.com/library/view/scala-machine-learning/9781788479042/5355fd2b-8e0c-4bf8-a3f3-9e2ad9de7327.xhtml
https://www.safaribooksonline.com/library/view/hands-on-data-science/9781787280748/
https://www.safaribooksonline.com/library/view/statistics-for-machine/9781788295758/94fde0ee-fc9e-4cbc-aac4-d8dc1d9d94f4.xhtml
https://www.safaribooksonline.com/library/view/statistics-for-machine/9781788295758/a9a363b7-2535-46f5-b27b-0738aad3b260.xhtml