Machine Learning
  • Introduction
  • Self LEarning
  • Why Statstics in ML Or Data Science
  • How important is interpretability for a model in Machine Learning?
  • What are the most important machine learning techniques to master at this time?
  • Learning
    • Supervised Learning
      • Evaluating supervised learning
        • K-fold cross validation
        • Using train/test to prevent overfitting of a polynomial regression
      • Regression
        • Linear regression
          • The ordinary least squares technique
          • The gradient descent technique
          • The co-efficient of determination or r-squared
            • Computing r-squared
            • Interpreting r-squared
          • Assumptions of linear regression
          • Steps applied in linear regression modeling
          • Evaluation Metrics Linear Regression
          • p-value
        • Ridge regression
        • Least absolute shrinkage and selection operator (lasso) Regression
        • Polynomial regression
        • Performance Metrics
        • Regularization parameters in linear regression and ridge/lasso regression
        • Comments
      • Classification
        • test
        • Logistic Regression
        • naïve Bayes
        • support vector machines (SVM)
        • decision trees
          • Split Candidates
          • Stopping conditions
          • Parameters
            • Non Tunable Or Specificable
            • Tunable
            • Stopping Parameters
        • Evaluation Metrics
      • Random Forest
        • Logistic Regression Versus Random Forest
        • Paramters
          • Non Tunable Parameters
          • Tunable
          • Stopping Param
        • Parameter Comparison of Decision Trees and Random Forests
        • Classification and Regression Trees (CART)
        • How random forest works
        • Terminologies related to random forest algorithm
        • Out-of-Bag Error
      • Decision Trees
        • Gini Index
    • Unsupervised learning
      • Clustering
        • test
        • KMeans Clustering
          • Params
          • Functions
        • Gaussian Mixture
          • Parameters
          • functions
    • Semi-supervised learning
    • Reinforcement learning
    • Learning Means What
    • Goal
    • evaluation metrics
      • Regression
        • MSE And Root Mean Squared Error (RMSE)
        • Mean Absolute Error (MAE)
      • Model Validation
        • test
      • The bias, variance, and regularization properties
        • Regularization
          • Ridge regression
        • Bias And Variance
      • The key metrics to focus
    • hyperparameters
  • Steps in machine learning model development and deployment
  • Statistical fundamentals and terminology
  • Statistics
    • Measuring Central Tendency
    • Probability
    • Standard Deviation , Variance
    • root mean squared error (RMSE)
    • mean Absolute Error
    • explained Variance
    • Coefficient of determination R2
    • Standard Error
    • Random Variable
      • Discrete
      • Continuous
    • Sample vs Population
    • Normal Distribution
    • Z Score
    • Percentile
    • Skewness and Kurtosis
    • Co-variance vs Correlation
    • Confusion matrix
    • References
    • Types of data
      • Numerical data
        • Discrete data
        • Continuous data
      • Categorical data
      • Ordinal data
    • Bias versus variance trade-off
  • Spark MLib
    • Data Types
      • Vector
      • LabeledPoint
      • Rating
      • Matrices
        • Local Matrix
        • Distributed matrix
          • RowMatrix
          • IndexedRowMatrix
          • CoordinateMatrix
          • BlockMatrix
    • Comparing algorithms supported by MLlib
      • Classification
    • When and why should you use MLlib (versus scikit-learn versus TensorFlow versus foo package)
    • Pipeline
    • References
    • Linear algebra in Spark
  • Terminology
  • Machine Learning Steps
    • test
  • Preprocessing and Feature selection techniues
  • The importance of variables feature selection/attribute selection
    • Feature Selection
      • forward selection
      • mixed selection or bidirectional elimination
      • backward selection or backward elimination
      • The key metrics to focus on
  • Feature engineering
  • Hyperplanes
  • cross-validation
  • Machine learning losses
  • When to stop tuning machine learning models
  • Train, validation, and test data
  • input data structure
  • Why are matrices/vectors used in machine learning/data analysis?
    • Linear Algebra
  • OverView
  • Data scaling and normalization
  • Questions
  • Which machine learning algorithm should I use?
Powered by GitBook
On this page

Was this helpful?

  1. Learning
  2. evaluation metrics
  3. The bias, variance, and regularization properties

Bias And Variance

PreviousRidge regressionNextThe key metrics to focus

Last updated 5 years ago

Was this helpful?

Every model has both bias and variance error components in addition to white noise. Bias and variance are inversely related to each other; while trying to reduce one component, the other component of the model will increase. The true art lies in creating a good fit by balancing both. The ideal model will have both low bias and low variance.

Errors from the bias component come from erroneous assumptions in the underlying learning algorithm. High bias can cause an algorithm to miss the relevant relations between features and target outputs; this phenomenon causes an underfitting problem.

On the other hand, errors from the variance component come from sensitivity to change in the fit of the model, even a small change in training data; high variance can cause an overfitting problem:

An example of a high bias model is logistic or linear regression, in which the fit of the model is merely a straight line and may have a high error component due to the fact that a linear model could not approximate underlying data well.

An example of a high variance model is a decision tree, in which the model may create too much wiggly curve as a fit, in which even a small change in training data will cause a drastic change in the fit of the curve.

https://www.safaribooksonline.com/library/view/statistics-for-machine/9781788295758/16bf3b8e-a897-45a8-8959-e3d2e1d0ec5b.xhtml