spark notes
  • Introduction
  • Databricks
  • Concepts
  • Spark Execution Flow
    • SparkContext and SparkSession
  • Resilient Distributed Dataset (RDD)
    • Caching
    • Pair RDDs
    • Transformations
      • Depedency Resolution
    • Actions
    • Persistence
    • RDD lineage
    • Types of RDDs
    • Loading Data into RDDs
    • Data Locality with RDDs
    • How Many Partitions Does An RDD Have
  • Spark job submission breakdown
  • Why Cluster Manager
  • SparkContext and its components
  • Spark Architecture
    • Stages
    • Tasks
    • Executors
    • RDD
    • DAG
    • Jobs
    • Partitions
  • Spark Deployment Modes
  • Running Modes
  • Spark Execution Flow
  • DataFrames, Datasets,RDDs
  • SparkSQL
    • Architecture
    • Spark Session
  • Where Does Map Reduce Does not Fit
  • Actions
    • reduceByKey
    • count
    • collect, take, top, and first Actions
    • take
    • top
    • first
    • The reduce and fold Actions
  • DataSets
  • Spark Application Garbage Collector
  • How Mapreduce works in spark
  • Notes
  • Scala
  • Spark 2.0
  • Types Of RDDs
    • MapPartitionsRDD
  • Spark UI
  • Optimization
    • Tungsten
  • Spark Streaming
    • Notes
    • Flow
  • FlatMap - Different Variations
  • Examples
  • Testing Spark
  • Passing functions to Spark
  • CONFIGURATION, MONITORING, AND TUNING
  • References
Powered by GitBook
On this page

Was this helpful?

  1. Actions

top

RDD.top(n, key=None)

The top action returns the top n elements from an RDD, but unlike take, the elements are ordered and returned in descending order. Order is determined by the object type, such as, for example, numerical order forintegers or dictionary order for strings.

The key argument specifies the key by which to order the results to return the top n elements.

PrevioustakeNextfirst

Last updated 5 years ago

Was this helpful?